Share this post
Creating Your Own Multimodal Collaborative Pods (MCPs)
Multimodal Collaborative Pods (MCPs) represent one of the most exciting developments in AI architecture. In this comprehensive guide, we’ll explore how to create your own custom MCPs from scratch.
Understanding MCPs
MCPs are specialized AI systems designed to process and integrate multiple forms of data (text, images, audio, video) while facilitating collaboration between different AI components. They serve as a crucial architectural pattern for building more capable and contextually aware AI systems.
The key components of an MCP include:
- Multimodal Encoders: Process different types of data (text, images, audio)
- Fusion Layers: Combine information from different modalities
- Reasoning Modules: Perform inference and decision-making
- Collaboration Interfaces: Allow MCPs to communicate with other systems
Step 1: Define Your MCP Architecture
Begin by clearly defining what your MCP needs to accomplish. Will it focus on:
- Visual understanding and text generation?
- Audio processing and semantic analysis?
- Multi-agent coordination and task decomposition?
The architecture should reflect your specific use case. Here’s a sample architecture diagram:
+-----------------+ +-------------------+
| Input Processors | | Output Generators |
| - Text | | - Text |
| - Image | | - Action |
| - Audio | | - Decision |
+-----------------+ +-------------------+
| ^
v |
+-----------------+ +-------------------+
| Fusion Layer | | Reasoning Engine |
| (Transformers) |--->| (Specialized LLM) |
+-----------------+ +-------------------+
|
v
+-------------------+
| Memory System |
| (Context Store) |
+-------------------+
Step 2: Implement Data Processors
For each modality your MCP will handle, you’ll need dedicated processors:
import { createTextProcessor, createImageProcessor, createAudioProcessor } from './processors';
class MultimodalProcessor {
constructor() {
this.textProcessor = createTextProcessor();
this.imageProcessor = createImageProcessor();
this.audioProcessor = createAudioProcessor();
}
async process(input) {
const results = {};
if (input.text) {
results.text = await this.textProcessor.encode(input.text);
}
if (input.image) {
results.image = await this.imageProcessor.encode(input.image);
}
if (input.audio) {
results.audio = await this.audioProcessor.encode(input.audio);
}
return results;
}
}
Step 3: Create the Fusion Layer
The fusion layer integrates information from different modalities:
class FusionLayer {
constructor(config) {
this.transformer = createTransformer(config);
this.projectionLayers = {};
// Create projection layers for each modality
for (const modality of ['text', 'image', 'audio']) {
this.projectionLayers[modality] = createProjectionLayer(modality, config);
}
}
async fuse(processedInputs) {
// Project each modality to a common representation space
const projectedInputs = {};
for (const [modality, data] of Object.entries(processedInputs)) {
projectedInputs[modality] = this.projectionLayers[modality](data);
}
// Concatenate and process through transformer
const concatenated = concatenateEmbeddings(projectedInputs);
const fusedRepresentation = this.transformer.forward(concatenated);
return fusedRepresentation;
}
}
Step 4: Implement the Reasoning Engine
The reasoning engine is often based on a fine-tuned language model:
class ReasoningEngine {
constructor(config) {
this.model = loadLanguageModel(config.modelPath);
this.promptTemplate = config.promptTemplate;
}
async reason(fusedRepresentation, query) {
// Convert fused representation to a format suitable for the LLM
const contextVector = convertToLLMContext(fusedRepresentation);
// Generate prompt with context
const prompt = this.promptTemplate
.replace('{CONTEXT}', contextVector)
.replace('{QUERY}', query);
// Get LLM response
const response = await this.model.generate(prompt, {
maxTokens: 1000,
temperature: 0.7
});
return response;
}
}
Step 5: Add Memory and Context Management
For maintaining context over interactions:
class MCPMemory {
constructor(config) {
this.shortTermMemory = createVectorStore(config.shortTerm);
this.longTermMemory = createVectorStore(config.longTerm);
this.currentContext = [];
}
async addToContext(interaction) {
this.currentContext.push(interaction);
await this.shortTermMemory.add(interaction);
// Periodically update long-term memory
if (this.currentContext.length % 10 === 0) {
this.updateLongTermMemory();
}
}
async retrieveRelevantContext(query) {
const shortTermResults = await this.shortTermMemory.search(query, 5);
const longTermResults = await this.longTermMemory.search(query, 3);
return [...shortTermResults, ...longTermResults];
}
async updateLongTermMemory() {
// Summarize and store important information
const summary = await summarizeContext(this.currentContext);
await this.longTermMemory.add(summary);
}
}
Step 6: Implement Collaboration Interfaces
For enabling MCPs to communicate with each other:
class CollaborationInterface {
constructor(config) {
this.apiEndpoint = config.apiEndpoint;
this.authToken = config.authToken;
this.supportedPeers = config.supportedPeers || [];
}
async sendRequest(peerId, request) {
if (!this.supportedPeers.includes(peerId)) {
throw new Error('Unsupported peer: ' + peerId);
}
const response = await fetch(this.apiEndpoint + '/peers/' + peerId, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': 'Bearer ' + this.authToken
},
body: JSON.stringify(request)
});
return response.json();
}
async registerEventListener(eventType, callback) {
// Implementation depends on your communication protocol
// Could be WebSockets, Server-Sent Events, etc.
}
}
Step 7: Assembling Your MCP
Bringing all components together:
class MultimodalCollaborativePod {
constructor(config) {
this.processor = new MultimodalProcessor();
this.fusionLayer = new FusionLayer(config.fusion);
this.reasoningEngine = new ReasoningEngine(config.reasoning);
this.memory = new MCPMemory(config.memory);
this.collaborationInterface = new CollaborationInterface(config.collaboration);
// Register event handlers
this.collaborationInterface.registerEventListener('request', this.handleRequest.bind(this));
}
async process(input, query) {
// Process multimodal inputs
const processedInputs = await this.processor.process(input);
// Fuse modalities
const fusedRepresentation = await this.fusionLayer.fuse(processedInputs);
// Retrieve relevant context
const context = await this.memory.retrieveRelevantContext(query);
// Combine context with fused representation
const enrichedRepresentation = combineWithContext(fusedRepresentation, context);
// Apply reasoning
const response = await this.reasoningEngine.reason(enrichedRepresentation, query);
// Update memory
await this.memory.addToContext({
input,
query,
response,
timestamp: new Date().toISOString()
});
return response;
}
async handleRequest(request) {
// Handle collaboration requests from other MCPs
const { input, query, requesterInfo } = request;
// Process the request
const response = await this.process(input, query);
// You might want to log or handle this interaction differently
console.log('Processed request from ' + requesterInfo.id);
return response;
}
async collaborateWith(peerId, input, query) {
return this.collaborationInterface.sendRequest(peerId, {
input,
query,
requesterInfo: {
id: 'this-mcp-id',
capabilities: ['text', 'image', 'reasoning']
}
});
}
}
Step 8: Testing and Optimization
Testing your MCP thoroughly is essential:
- Unit test each component independently
- Conduct integration tests across components
- Perform end-to-end testing with realistic inputs
- Benchmark performance and optimize bottlenecks
// Example test for multimodal processing
async function testMultimodalProcessing() {
const processor = new MultimodalProcessor();
const input = {
text: "What's in this image?",
image: readImageFile('test_image.jpg')
};
const result = await processor.process(input);
// Verify the results have the expected shape and values
assert(result.text && result.text.length > 0, 'Text processing failed');
assert(result.image && result.image.length > 0, 'Image processing failed');
}
Conclusion
Building your own MCP architecture provides tremendous flexibility and can be tailored to specific application needs. While this guide covers the fundamental components, real-world implementations may require additional considerations:
- Scalability and distributed computing
- Security and privacy considerations
- Ethical use and bias mitigation
- Deployment strategies (cloud, edge, hybrid)
In the next article, we’ll explore how to use these custom MCPs to build sophisticated AI agents that can solve complex tasks through collaboration and reasoning.