Building Powerful AI Agents Using Multimodal Collaborative Pods
Share this post
Building Powerful AI Agents Using Multimodal Collaborative Pods
With Multimodal Collaborative Pods (MCPs) serving as the foundation, we can now build advanced AI agents capable of complex reasoning, planning, and execution. This guide will walk you through the process of creating powerful AI agents using MCP architecture.
Understanding AI Agents
AI agents are autonomous systems that can perceive their environment, make decisions, and take actions to achieve specific goals. When built on top of MCPs, these agents gain several powerful capabilities:
- Multimodal Understanding: Processing and reasoning across different types of data
- Collaborative Intelligence: Working with other agents to solve complex problems
- Contextual Awareness: Maintaining and utilizing relevant context over time
- Goal-directed Behavior: Planning and executing actions to achieve objectives
Agent Architecture
The architecture of an AI agent built on MCPs typically includes:
+-------------------+ +-------------------+
| Perception System | | Action System |
| (MCP Core) |<-->| (Tool Executors) |
+-------------------+ +-------------------+
| ^ ^ |
v | | v
+-------------------+ +-------------------+
| Planning Module |<-->| Memory System |
| (Task Decomposer) | | (Working Memory) |
+-------------------+ +-------------------+
\ /
\ /
v v
+-------------------+
| Learning Module |
| (Adaptation) |
+-------------------+
Step 1: Define Agent Goals and Capabilities
Begin by clearly defining what your agent needs to accomplish:
const agentDefinition = {
name: "ResearchAssistant",
description: "An AI research assistant that can analyze scientific papers, synthesize findings, and draft summaries.",
goals: [
"Analyze academic papers and extract key findings",
"Synthesize information across multiple sources",
"Generate well-structured research summaries",
"Answer research-related questions with citations"
],
capabilities: [
"Document understanding",
"Image analysis",
"Web search",
"Data extraction",
"Text generation"
],
tools: [
"DocumentAnalyzer",
"WebSearcher",
"CitationManager",
"SummaryGenerator"
]
};
Step 2: Implement the Perception System
The perception system builds on the MCP’s multimodal processing capabilities:
class AgentPerceptionSystem {
constructor(config) {
this.mcp = new MultimodalCollaborativePod(config.mcp);
this.inputParsers = config.inputParsers || defaultInputParsers();
}
async perceive(inputs) {
// Pre-process inputs using specialized parsers
const parsedInputs = {};
for (const [type, input] of Object.entries(inputs)) {
if (this.inputParsers[type]) {
parsedInputs[type] = await this.inputParsers[type](input);
} else {
parsedInputs[type] = input; // Pass through
}
}
// Process through the MCP
return this.mcp.process(parsedInputs, "Analyze and understand all inputs");
}
// Register a new input parser
registerParser(inputType, parserFunction) {
this.inputParsers[inputType] = parserFunction;
return this;
}
}
// Example input parsers
function defaultInputParsers() {
return {
pdf: async (pdfBuffer) => extractTextAndImagesFromPDF(pdfBuffer),
webpage: async (url) => scrapeWebpage(url),
image: async (imageBuffer) => extractFeaturesFromImage(imageBuffer),
text: async (text) => text // Simple passthrough
};
}
Step 3: Create the Planning Module
The planning module helps the agent break down complex tasks:
class PlanningModule {
constructor(config) {
this.reasoningEngine = new ReasoningEngine(config.reasoning);
this.planTemplates = config.planTemplates || {};
this.maxPlanSteps = config.maxPlanSteps || 10;
}
async createPlan(goal, context) {
// Select a plan template based on the goal, or use a generic one
const template = this.planTemplates[goal.type] || this.planTemplates.generic;
const planningPrompt = template
.replace('{GOAL}', goal.description)
.replace('{CONTEXT}', JSON.stringify(context));
// Generate the plan using the reasoning engine
const planJson = await this.reasoningEngine.reason(context, planningPrompt);
try {
const plan = JSON.parse(planJson);
// Validate and limit the plan
if (Array.isArray(plan.steps) && plan.steps.length > 0) {
plan.steps = plan.steps.slice(0, this.maxPlanSteps);
return plan;
}
throw new Error('Invalid plan structure');
} catch (e) {
console.error('Failed to parse plan:', e);
// Fallback to a simple plan
return {
goal: goal.description,
steps: [{
id: 1,
description: 'Directly achieve: ' + goal.description,
tool: this.suggestToolForGoal(goal)
}]
};
}
}
suggestToolForGoal(goal) {
// Logic to map goals to appropriate tools
// This could be a simple lookup or more sophisticated matching
const toolMappings = {
'research': 'WebSearcher',
'summarize': 'SummaryGenerator',
'analyze': 'DocumentAnalyzer',
// Default
'default': 'GenericExecutor'
};
const goalLower = goal.description.toLowerCase();
for (const [keyword, tool] of Object.entries(toolMappings)) {
if (goalLower.includes(keyword)) {
return tool;
}
}
return toolMappings.default;
}
}
Step 4: Build the Action System
The action system executes the steps in the plan:
class ActionSystem {
constructor(config) {
this.tools = {};
this.defaultTool = config.defaultTool || 'GenericExecutor';
// Register tools
for (const [name, toolConfig] of Object.entries(config.tools || {})) {
this.registerTool(name, new ToolExecutor(name, toolConfig));
}
}
registerTool(name, toolInstance) {
this.tools[name] = toolInstance;
return this;
}
async executeStep(step, context) {
const tool = this.tools[step.tool] || this.tools[this.defaultTool];
if (!tool) {
throw new Error('No tool available for: ' + step.tool);
}
console.log('Executing step: ' + step.description + ' with tool: ' + step.tool);
try {
const result = await tool.execute(step, context);
return {
success: true,
result,
metadata: {
toolUsed: step.tool,
timestamp: new Date().toISOString()
}
};
} catch (error) {
console.error('Tool execution failed:', error);
return {
success: false,
error: error.message,
metadata: {
toolUsed: step.tool,
timestamp: new Date().toISOString()
}
};
}
}
async executePlan(plan, context) {
const results = [];
let updatedContext = { ...context };
for (const step of plan.steps) {
const stepResult = await this.executeStep(step, updatedContext);
results.push(stepResult);
// Update context with the results of this step
updatedContext = {
...updatedContext,
['step_' + step.id + '_result']: stepResult
};
// If a step fails and is marked as critical, stop execution
if (!stepResult.success && step.critical) {
break;
}
}
return {
planResults: results,
finalContext: updatedContext
};
}
}
class ToolExecutor {
constructor(name, config) {
this.name = name;
this.config = config;
this.apiClient = config.apiClient;
}
async execute(step, context) {
// Implementation depends on the specific tool
// For example, a web search tool might look like this:
if (this.name === 'WebSearcher') {
const query = this.extractQueryFromStep(step, context);
const searchResults = await this.apiClient.search(query, {
numResults: this.config.numResults || 5
});
return this.processSearchResults(searchResults);
}
// Document analyzer example
if (this.name === 'DocumentAnalyzer') {
const document = context.document || step.document;
if (!document) {
throw new Error('No document provided for analysis');
}
return this.apiClient.analyzeDocument(document, {
extractTables: this.config.extractTables || false,
extractFigures: this.config.extractFigures || false
});
}
// Implement other tool types...
throw new Error('Tool ' + this.name + ' execution not implemented');
}
extractQueryFromStep(step, context) {
// Logic to extract search query from step and context
return step.parameters?.query || step.description;
}
processSearchResults(results) {
// Process and format search results
return results.map(result => ({
title: result.title,
url: result.url,
snippet: result.snippet,
source: result.source
}));
}
}
Step 5: Implement the Memory System
The memory system maintains the agent’s working memory:
class AgentMemorySystem {
constructor(config) {
this.workingMemory = config.initialWorkingMemory || {};
this.episodicMemory = [];
this.mcpMemory = config.mcpMemory; // Reference to the underlying MCP memory
}
// Update working memory with new information
updateWorkingMemory(updates) {
this.workingMemory = {
...this.workingMemory,
...updates,
lastUpdated: new Date().toISOString()
};
return this.workingMemory;
}
// Record a complete interaction episode
recordEpisode(episode) {
const timestampedEpisode = {
...episode,
timestamp: new Date().toISOString(),
episodeId: 'ep_' + (this.episodicMemory.length + 1)
};
this.episodicMemory.push(timestampedEpisode);
// Also add to MCP memory for semantic search
if (this.mcpMemory) {
this.mcpMemory.addToContext(timestampedEpisode);
}
return timestampedEpisode;
}
// Get the current working memory
getWorkingMemory() {
return { ...this.workingMemory };
}
// Retrieve recent episodes
getRecentEpisodes(count = 5) {
return this.episodicMemory.slice(-count);
}
// Search for relevant episodes
async searchRelevantEpisodes(query) {
if (this.mcpMemory) {
return this.mcpMemory.retrieveRelevantContext(query);
}
// Fallback to simple keyword matching if no MCP memory
return this.episodicMemory.filter(ep =>
JSON.stringify(ep).toLowerCase().includes(query.toLowerCase())
).slice(-5);
}
}
Step 6: Build the Learning Module
The learning module helps the agent improve over time:
class LearningModule {
constructor(config) {
this.feedbackStore = [];
this.adaptationEngine = config.adaptationEngine;
this.learningRate = config.learningRate || 0.1;
this.lastAdaptationTime = null;
}
// Record feedback for learning
recordFeedback(feedback) {
const processedFeedback = {
...feedback,
timestamp: new Date().toISOString(),
processed: false
};
this.feedbackStore.push(processedFeedback);
return processedFeedback;
}
// Learn from accumulated feedback
async adapt() {
if (!this.adaptationEngine) {
console.warn('No adaptation engine configured, learning disabled');
return null;
}
// Get unprocessed feedback
const unprocessedFeedback = this.feedbackStore.filter(fb => !fb.processed);
if (unprocessedFeedback.length === 0) {
return null;
}
try {
// Generate adaptations based on feedback
const adaptations = await this.adaptationEngine.generateAdaptations(unprocessedFeedback);
// Apply the adaptations
const appliedAdaptations = await this.applyAdaptations(adaptations);
// Mark feedback as processed
unprocessedFeedback.forEach(fb => {
fb.processed = true;
});
this.lastAdaptationTime = new Date().toISOString();
return appliedAdaptations;
} catch (error) {
console.error('Adaptation failed:', error);
return null;
}
}
async applyAdaptations(adaptations) {
const appliedAdaptations = [];
for (const adaptation of adaptations) {
try {
switch (adaptation.type) {
case 'planTemplate':
// Update planning templates
this.updatePlanTemplate(adaptation.templateId, adaptation.update);
appliedAdaptations.push(adaptation);
break;
case 'toolConfiguration':
// Update tool configurations
this.updateToolConfig(adaptation.toolId, adaptation.update);
appliedAdaptations.push(adaptation);
break;
case 'promptImprovement':
// Improve prompts based on feedback
this.updatePrompt(adaptation.promptId, adaptation.update);
appliedAdaptations.push(adaptation);
break;
default:
console.warn('Unknown adaptation type: ' + adaptation.type);
}
} catch (error) {
console.error('Failed to apply adaptation ' + adaptation.type + ':', error);
}
}
return appliedAdaptations;
}
// Helper methods for specific adaptation types
updatePlanTemplate(templateId, update) {
// Implementation depends on how plan templates are stored
}
updateToolConfig(toolId, update) {
// Implementation depends on how tools are configured
}
updatePrompt(promptId, update) {
// Implementation depends on how prompts are managed
}
}
Step 7: Assembling the Agent
Now we can bring all components together:
class MCP_Agent {
constructor(config) {
// Initialize core components
this.perceptionSystem = new AgentPerceptionSystem(config.perception);
this.planningModule = new PlanningModule(config.planning);
this.actionSystem = new ActionSystem(config.action);
this.memorySystem = new AgentMemorySystem(config.memory);
this.learningModule = new LearningModule(config.learning);
// Agent metadata
this.id = config.id || 'agent_' + Date.now();
this.name = config.name || 'Generic MCP Agent';
this.description = config.description || '';
this.capabilities = config.capabilities || [];
// For tracking current tasks
this.currentTask = null;
}
async processInput(input, goal) {
// Start tracking a new task
this.currentTask = {
id: 'task_' + Date.now(),
startTime: new Date().toISOString(),
goal,
status: 'in_progress'
};
try {
// Step 1: Perception - understand the input
console.log('Agent ' + this.name + ' perceiving input...');
const perception = await this.perceptionSystem.perceive(input);
// Step 2: Retrieve relevant context from memory
console.log('Retrieving relevant context...');
const relevantContext = await this.memorySystem.searchRelevantEpisodes(goal);
// Step 3: Create context for planning
const planningContext = {
perception,
relevantEpisodes: relevantContext,
workingMemory: this.memorySystem.getWorkingMemory(),
input
};
// Step 4: Create a plan
console.log('Creating plan for goal: ' + goal + '...');
const plan = await this.planningModule.createPlan({ description: goal }, planningContext);
// Step 5: Execute the plan
console.log('Executing plan with ' + plan.steps.length + ' steps...');
const { planResults, finalContext } = await this.actionSystem.executePlan(plan, planningContext);
// Step 6: Generate the final response
const response = await this.generateResponse(goal, plan, planResults, finalContext);
// Step 7: Update memory
const episode = {
task: this.currentTask.id,
input,
goal,
plan,
planResults,
response
};
this.memorySystem.recordEpisode(episode);
this.currentTask.status = 'completed';
this.currentTask.endTime = new Date().toISOString();
// Step 8: Trigger adaptation if needed
if (this.shouldAdapt()) {
this.learningModule.adapt().catch(e =>
console.error('Adaptation failed:', e)
);
}
return response;
} catch (error) {
console.error('Agent ' + this.name + ' encountered an error:', error);
this.currentTask.status = 'failed';
this.currentTask.error = error.message;
this.currentTask.endTime = new Date().toISOString();
// Return a graceful error response
return {
success: false,
error: error.message,
fallbackResponse: 'I encountered an issue while processing your request: ' + error.message
};
}
}
async generateResponse(goal, plan, planResults, context) {
// This would typically use the MCP's reasoning engine to generate a coherent response
// based on the results of the plan execution
// For now, we'll create a simple structured response
const successfulSteps = planResults.filter(r => r.success);
const failedSteps = planResults.filter(r => !r.success);
if (failedSteps.length > 0 && failedSteps.some(step => step.critical)) {
return {
success: false,
message: "I wasn't able to fully complete the task because some critical steps failed.",
completedSteps: successfulSteps.length,
failedSteps: failedSteps.length,
details: planResults
};
}
// Combine results from successful steps
const combinedResults = successfulSteps.map(step => step.result);
return {
success: true,
message: "I've completed the task: " + goal,
completedSteps: successfulSteps.length,
results: combinedResults,
details: planResults
};
}
shouldAdapt() {
// Logic to determine if adaptation should be triggered
// For example, after a certain number of episodes or on a schedule
if (!this.learningModule.lastAdaptationTime) {
return true; // First time
}
const hoursSinceLastAdaptation =
(new Date() - new Date(this.learningModule.lastAdaptationTime)) / (1000 * 60 * 60);
return hoursSinceLastAdaptation > 24; // Adapt once per day
}
// Methods for external feedback
async provideFeedback(feedback) {
return this.learningModule.recordFeedback(feedback);
}
// Get agent status
getStatus() {
return {
id: this.id,
name: this.name,
description: this.description,
capabilities: this.capabilities,
currentTask: this.currentTask,
memoryStats: {
episodesStored: this.memorySystem.episodicMemory.length,
workingMemorySize: Object.keys(this.memorySystem.workingMemory).length
},
lastAdaptation: this.learningModule.lastAdaptationTime
};
}
}
Step 8: Deployment and Integration
Finally, deploy your agent and integrate it with your application:
// Example agent configuration
const agentConfig = {
id: 'research_assistant_v1',
name: 'Research Assistant',
description: 'An AI research assistant that can analyze scientific papers, synthesize findings, and draft summaries.',
capabilities: ['document-analysis', 'web-search', 'summarization'],
perception: {
mcp: mcpConfig, // Configuration for the underlying MCP
inputParsers: customInputParsers // Custom parsers for your domain
},
planning: {
reasoning: reasoningConfig,
planTemplates: {
research: "Given the goal: {GOAL}\nAnd this context: {CONTEXT}\nCreate a detailed research plan with steps.",
summarization: "Create a plan to summarize the following: {CONTEXT}\nTo achieve: {GOAL}",
generic: "Create a step-by-step plan to achieve: {GOAL}\nUsing this context: {CONTEXT}"
}
},
action: {
tools: {
WebSearcher: { apiClient: webSearchClient },
DocumentAnalyzer: { apiClient: documentAnalysisClient },
CitationManager: { apiClient: citationClient },
SummaryGenerator: { apiClient: summaryClient }
}
},
memory: {
initialWorkingMemory: {
userPreferences: {
citationStyle: 'APA',
detailLevel: 'comprehensive'
}
},
mcpMemory: mcpMemoryInstance
},
learning: {
adaptationEngine: adaptationEngine,
learningRate: 0.2
}
};
// Create the agent
const researchAgent = new MCP_Agent(agentConfig);
// Example API endpoint for using the agent
async function handleAgentRequest(req, res) {
const { input, goal } = req.body;
try {
const result = await researchAgent.processInput(input, goal);
res.json(result);
} catch (error) {
res.status(500).json({
error: 'Agent processing failed',
message: error.message
});
}
}
Advanced Agent Capabilities
With the foundation in place, you can extend your agent with more sophisticated capabilities:
Multi-Agent Collaboration
Enable your agent to work with other agents:
class AgentCollaborationManager {
constructor(config) {
this.mainAgent = config.mainAgent;
this.specialistAgents = config.specialistAgents || {};
this.collaborationProtocols = config.protocols || {};
}
async collaborateOn(task, context) {
// Determine which specialists to involve
const relevantSpecialists = this.identifyRelevantSpecialists(task);
// Create a collaboration plan
const collaborationPlan = await this.createCollaborationPlan(task, relevantSpecialists);
// Execute the collaboration
return this.executeCollaboration(collaborationPlan, context);
}
identifyRelevantSpecialists(task) {
// Logic to determine which specialist agents should be involved
// based on the task requirements and agent capabilities
}
async createCollaborationPlan(task, specialists) {
// Logic to create a plan that coordinates multiple agents
}
async executeCollaboration(plan, context) {
// Logic to execute the plan across multiple agents
}
}
Self-Improvement
Implement mechanisms for agents to improve their own capabilities:
class SelfImprovementModule {
constructor(config) {
this.agent = config.agent;
this.improvementStrategies = config.strategies || {};
}
async analyzePerformance() {
// Analyze past episodes to identify improvement opportunities
}
async generateImprovements() {
// Generate specific improvements based on analysis
}
async implementImprovements(improvements) {
// Apply the improvements to the agent configuration
}
}
Conclusion
Building AI agents with MCP architecture provides a powerful framework for creating intelligent, adaptive systems that can work across different types of data and collaborate effectively. The modular design allows for continuous improvement and extension of capabilities.
As this field evolves, we can expect even more sophisticated agent architectures that push the boundaries of what’s possible with AI. By understanding the fundamental components and how they interact, you’re well-positioned to build and deploy effective AI agents for a wide range of applications.